Алгоритмическая торговля. Научный подход

Курс по алгоритмическому трейдингу для тех, кто не забыл высшую математику уровня экономического ВУЗа

Видеокурс

Уровень: Средний

Александр Горчаков

Количество занятий: 7 занятий

Стоимость: 6000 РУБ

Описание

Трейдеры на мировых биржах от Австралии и до Нью-Йорка все меньше торгуют рыками и все больше используют торговые алгоритмы. На Московской Биржи более 50% объема торгов приходится на алгоритмические стратегии. А доля их заявок в общем объеме перевалила за 80%.

Тот, кто вчера активно кликал мышкой, сегодня формализовал свою стратегию и запрограммировал её сам или у друга, который знает C++ или Python.

Почему торговые роботы так популярны?

Робот не имеет эмоций: он не радуется, когда зарабатывает 10% и не расстраивается, когда теряет 50%. Он не знает, что такое страх и жадность. У робота есть набор правил и команд, которым он следует. Если надо купить, робот покупает, если продать – продает. Робот может исполнять команды быстрее, чем человек. Робот может одновременно следить за сигналами на многих инструментах, а человек следит только за тем, что видит на мониторе.

В голове каждого робота сидит алгоритм, который придумал человек. Самое сложное – придумать этот алгоритм. Для этого нужно проанализировать данные, выдвинуть гипотизу, сформулировать правила, проанализировать результат на исторических данных, скорректировать гипотизу и правила, и еще раз прогнать алгоритм на истории. Для этого нужно владеть математикой и статистикой и знать, как применять эти знания на финансовых рынках.

Требования к слушателям:

Курс "Алгоритмическая торговля. Научный подход" рассчитан на подготовленных слушателей, которые помнят высшую математику, которую читают в экономических ВУЗах. На курсе будет не сухая теория, а чуть-чуть "жидкой теории" и много "густой практики" на примере нескольких торговых стратегий, которые работают уже 10 лет.

Чем этот курс отличается от прошлых:

В первой лекции курса систематически и без сложных формул излагаются принципы построения торговых алгоритмов, которые позволят любому желающему понять их и применить на практике при построении собственных алгоритмов «методом тыка».

Также Александр отказался от отдельного раздела по основным понятиям теории вероятностей и математической статистики, ограничившись напоминанием определений по мере возникновения их необходимости в материале.

Из курса исключен ряд математических результатов, представляющих чисто теоретический интерес, и оставлены лишь результаты, которые использовались Александром при построении собственных торговых алгоритмов, изложению которых по прежнему посвящены три последних лекции курса.

Программа видеокурса 

Занятие 1. Принципы построения торговых алгоритмов и необходимые понятия теории вероятностей и математической статистики

  • Узнаем, что такое случайность или детерминированность
  • Узнаем о вероятности, как мере числовой оценки шансов появления будущих событий
  • Открываем для себя торговый алгоритм, как статистический прогноз будущего приращения цены
  • Изучаем одномерные случайные величины:
    • функция распределения
    • математическое ожидание функции от случайной величины
    • квантили (перцентили)
    • стохастическое доминирование
  • Определяем, что такое бинарная модель приращений цен, тренд и контртренд, оптимальный алгоритм
  • Изучаем многомерные случайные величины:
    • независимость
    • условные распределения
    • задача статистического прогноза
    • регрессия
  • Узнаем, как подобрать индикаторы для торгового алгоритма «методом тыка»
  • Вспоминаем последовательности случайных величин:
    • стационарность
    • автокорреляционная и спектральная функции
    • случайное блуждание
    • показатель Херста (критика)
  • Используем математическую статистику:
    • выборка
    • выборочные статистики
    • достаточные статистики
    • различение гипотез
    • оценка параметров
    • параметрическая и непараметрическая статистика

Занятие 2. Тестирование и оптимизация торговых алгоритмов, как проверка качества статистического прогноза будущего приращения цены

  • Оцениваем долю «успехов»
  • Приводим автокорреляционную функцию динамики счета к нулевому виду
  • Отсеиваем параметры по:
    • устойчивости
    • стохастическому доминированию
    • взаимной корреляции
    • превосходству «доходность-риск» пассивной стратегии
  • Строим оптимальный портфель из:
    • одного торгового алгоритма с разными параметрами
    • нескольких торговых алгоритмов на одном активе
    • портфелей торговых алгоритмов на разных активах
  • Оцениваем будущие просадки счета методом Монте-Карло

Занятие 3. Практическое занятие по тестированию торговых алгоритмов

  • Используем полученные знания на практике

Занятие 4. Модели цен, как основы торговых алгоритмов

  • Разбираем конкурентный рынок, условную нормальность, «кусочную» стационарность
  • Изучаем кусочно-постоянную условно нормальную модель, тренды, минимаксную модель трендов
  • Вспоминаем кусочно-марковскую условно нормальную модель, тренды и контртренды
  • Узнаем о сильно «антиперсистентной» модели и ступенчатых трендах

Занятие 5-6. Примеры трендовых торговых алгоритмов

  • Строим модели для кусочно-постоянной условно нормальной модели
  • Рассматриваем модели для сильно «антиперсистентной» модели

Занятие 7. Фильтрация трендовых торговых алгоритмов и примеры контртрендовых торговых алгоритмов

  • Разбираем минимаксные модели трендов
  • Изучаем историю реальной торговли и модификации
  • Отбираем трендовые торговые алгоритмы
  • Кусочно-марковская условно нормальная модель, как основа построения «фильтра пилы»
  • «Фильтры» шортов и плечей, принципы построения, особенности использования
  • Рассматриваем примеры контртрендовых торговых алгоритмов
  • «Фильтр пилы», как индикатор торговли контртренда в рамках бинарной модели приращений цен
  • Maximum profit system для опционов (факультативно)

Преподаватели

Александр Горчаков

  • На фондовом рынке с 1997 года 
  • Квалификационные аттестаты ФКЦБ серии 1.0 и 5.0 
  • Присуждена государственная премия СССР в 1990 г.
  • Присуждена ученая степень кандидата физико-математических наук в 1993 г.
  • Работал в ФАПСИ, зерновой компании ОГО, Интраст (7 лет), Риск-Инвест (3 года) и Фрост (больше года), Спектр-Инвест (3 года), ИК Форум (с февраля 2012-го по настоящее время)

Отзывы (0)

У курса пока нет отзывов
Отзыв оставить могут только пользователи, посетившие курс
Выберите вариант обучения и нажмите записаться
  • Алгоритмическая торговля. Научный подход

Название

Алгоритмическая торговля. Научный подход

Алгоритмическая торговля. Научный подход

Стоимость

6000 РУБ

Количество занятий

7 занятий

В комплекте вы получите:
Материал - 6 файлов

Видеозапись

Это запись уже прошедшего курса. Все доступы к записи будут находиться в личном кабинете и дублироваться ссылкой на почту

Оплата

На бесплатное занятие можно просто записаться. Платные занятия можно оплатить удобным способом: карта, QIWI, Яндекс.Деньги и другими

Получение прибыли не гарантировано

Видеозапись

Это запись уже прошедшего курса. Все доступы к записи будут находиться в личном кабинете и дублироваться ссылкой на почту

Оплата

На бесплатное занятие можно просто записаться. Платные занятия можно оплатить удобным способом: карта, QIWI, Яндекс.Деньги и другими

Получение прибыли не гарантировано

Выберите вариант обучения и нажмите записаться
  • Алгоритмическая торговля. Научный подход

Название

Алгоритмическая торговля. Научный подход

Алгоритмическая торговля. Научный подход

Стоимость

6000 РУБ

Количество занятий

7 занятий